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ABSTRACT

Global stability robustness with respect to unmodeled dynamics, arbitrary
bounded internal noise, as well as external disturbance is shown to exist for
a class of discrete-time adaptive control systems when the regressor vectors
of these systems are persistently exciting. Although fast adaptation is
definitely undesirable, so far as attaining the greatest amount of global
stability robustness 1s concerned, slow adaptation is shown to be not
necessarily beneficial. The entire analysis in this paper holds for systems
with slowly varying return difference matrices; the plants in these systems

need not be slowly varying.
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1. INTRODUCTION

Persistency of excitation (PE) has been claimed to'be essential for guar-
anteeing some robustness in adaptive control (AC) systems ever since it was
proven to ensure robust exponentially fast identification [1,2]. But, to
date, no formal proof exists that PE guarantees global stability robustness
for discrete time systems in general. In [3] it is shown that if the refer-
ence input is PE and the signal-to-disturbance ratio is large, then model
reference adaptive control (MRAC) system signals will be globally bounded. 1In
[4] continuous time model reference adaptive control systems are shown to be
globally stable with unmodeled dynamics if the reference model is strictly
positive real and the regressor vector is persistently exciting. Atteuwpting
to extend the same to discrete time MRAC systems failed due to the fact that
discrete time MRAC systems do not exactly parallel continuous time MRAC
systems [5, Sec. 5.3]. As a result, only local stability is proved and slow
adaptation has to be assumed. No direct and explicit proof has yet been shown
that persistency of excitation guarantees some global stability robustness
against nonzero unmodeled dynamics and bounded internal as well as external
(with respect to the plant) noises for an entire class of discrete time AC
systems.

Perhaps fueled by the above bold claim together with a lack of any formal
proof that PE can guarantee robustness in general, many researchers resorted
to showing examples of problems of adaptive control systems and developing ad
hoc remedies for these problems [6,7,8]. It is well known in (nonadaptive)
robust controls research that a controller design based on the nominal plant

properties has only limited robustness against unmodeled dynamics in the plant

[9]. Showing robustness problems of AC systems demonstrates that the limit




extends to AC systems as well, and one should not expect any AC system to
perform satisfactorily under all unpredictable situations. The remedies in
[6,7,8] have value in solving the problems specifically exhibited provided
their required prior informations (e.g., solution starts within certain
bounded set [6], etc.) are verified. However, if an AC system does possess
some inherent global stability robustness, due to say PE, whether further
incorporating these ad hoc remedies would increase or decrease such basic
robustness is a question that remains to be answered.

The countribution of this paper is in proving directly and explicitly that
when the regressor vector of a discrete time AC system of a particular class

(maybe with a fast time-varying plant, as long as the system return-difference

matrix [9] 1is uniformly bounded and sufficiently slowly varying) is PE, the
system global stability 1s inherently robust against nonzero unmodeled
dynamics expressed in terms of stable factor perturbations [9] as well as any
bounded noise internal or external to the plant. It is also shown that if the
adaptation gain approaches zero (slow adaptation) the margin of such robust-
ness approaches a constant. However, this does not imply that slow adaptation
necessarily improves global stability robustness. This 1is justified by
analyzing a special case when the regressor vector is a scalar. The conclu~
sion obtained based on this analysis is that, while increasing the adaptation
rate indefinitely reduces the robustness for sure, the maximum robustness of
the AC system may be achieved at a finite adaptation rate.

Thus, 1if the popularity of using the averaging technique in AC system
stability analysis and the abundance of results obtained based on slow adapta-
tion, e.g., [5,10], in any way imply a strictly non-negative relatiomship
between slow adaptation and global stability robustness, this result shows the

contrary.
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This paper is organized as follows. 1In the following section, some nota-
tions and useful facts on robust control and linear time-varying systems are
first listed for ease of referencing later. In Section 3, the class of adapt-
ive control systems under consideration is developed to the extent relevant to
the derivation of the results of this paper. A general error model is then
developed for this class of AC systems in Section 4, followed by the inherent
global stability robustness proofs assuming persistency of excitation of the
regressor vector. In Section 6, the effects of the adaptation gain on the
inherent robustness are analyzed. Finally the results are summarized and the

paper is concluded with a discussion.

2. PRELIMINARIES

Let 2z denote the transfer function of the unit-delay operator. Let
R[z] denote the ring of polynomials in 2z with real coefficients and R(z)
denote the field of rational functions assoicated with R[z]. Let Z e R(z)
denote the set of causal stable rational functions of 2z, i.e., functions with
poles strictly outside the closed unit disk. Let M(Z) denote the set of
matrices whose elements belong to Z.

The plants considered in this paper are lumped linear causal discrete-—
time MIMO systems whose transfer matrices (or sequences of transfer matrices

if systems are time-varying) belong to M(R(z)), where M denotes matrices.

Definition 2.1: Let U(Z) denote the set of unimodular matrices in

M(Z). It is defined by




Wz) = {FeM@): F e M2l

Fact 2.2: M(R[z]) C M(Z).

Fact 2.3: Let E, Fe M(R[z]). If E, F are left or right coprime

in M(R[z]), then they are also left or right coprime in M(Z) respectively.

Let a plant P e M(R(z)) and a controller C ¢ M(R(z)) be coanected

as shown in Figure 1.

, e c w E%) u P h

Y

Figure 1. Standard feedback control system

Let (N,D) € M(Z), Npl = P, be a right coprime (in M(Z)) factorization

1

(r.c.f.) of P and (X,Y) ¢ M(2Z), Y 'X =C, be a left coprime (in M(Z))

factorization (l.c.f.) of C [9].

Fact 2.4: [9] C stabilizes P 1in the bounded-input bounded-output

(BIBO) sense if and only if

XN + YD ¢ U(Z).




XN + YD is referred to as the return-difference matrix of the system in

Figure 1. BIBO stability is often referred to as internal stability also.

! Fact 2.5: The poles of the system in Figure 1 are the zeros of XN + YD.

Let E e M(Z) be expressed as the infinite sum

E(z) =

I~ 8
e

N

(=
*

Definition 2.6: Define the norm "."a: M(Z) + R by

TEN =
a

o~ 8

1E. I,
J =

j=0

where H-Hiw denotes the induced infinity norm [11].

Fact 2.7: Let E e M(Z). Let yw{E} denote the ¢ -gain of E

[21, Section 3.2]. Then, for the systems under consideration,
Y, {E} - NEN .

Fact 2.8: [12] Let Ue U(z) and Ve M(Z). TIf IV -0 < 1/nU‘1ua

then Ve U(Z).

Fact 2.9: [25,19] Let E, F, G e M(R[z]). 1If E, F are right coprime

in M(R[z]), then there exists X, Y e M(R[z]) such that




XE + YF = G.

3. THE ADAPTIVE SYSTEM

The class of AC systems considered in this paper consists of MIMO AC
systems with direct signal-feedback connections (as opposed to only parameter-
feedback via the parameter adjustment process) from the outputs through the
controllers to the inputs of the plants. The primary objective of adaptation
for these systems is to satisfy asymptotically the necessary and sufficient
condition for internal stability stated in Fact 2.4. An example of an AC
system with only parameter-feedback (no explicit signal-feedback) appears in
[13]. A general block diagram of this class of AC systems is shown in terms
of an r.c.f. (N,D) of the strictly causal plant P and an l.c.f. (X,Y) of the

controller C in Figure 2, where d denotes disturbances

| I.D.

Figure 2. General AC system

external to the plant and n noises internal to the plant. This class of

systems Includes those studied in [14,15,16,17,12]. A general AC methodology

L am L e o4



for achieving the asymptotic internal stability objective can be developed
roughly as follows. Complete details can be found in [14] for a system in the
less general observer—controller structure and in the unit-advance operator
representation, and in [16] for a system in exactly the same structure as that
in Figure 2 and in the unit-delay operator (z) representation.

Ignoring n, d, the identifier, the time index %k and the estimation
symbol ~, consider the feedback system in Figure 2., Suppose P e M(R(z))
is not precisely known and the objective is to find a C & M(R(z)) such that

the feedback system is BIBO stable with poles at the zeroes of

U, = diag{ui} e U(Z), u; e R[z] ¥ i,
Assume N,D ¢ M(R[z]) and are coprime in M(R[z]) from now on. By Facts
2.2, 2.3, 2.4, and 2.5, if one can find a pair (X,Y) € M(R[z]) such that

XN+ YD =1U (1)

then implementing C by Y—1

X will achieve the above stability objective.
To find (X,Y) adaptively through identification, an error function €

needs to be defined. The convergence of this function to zero must result in

a solution pair for (1) to be identified. To find such ¢, let x := D—lu so

that

Multiplying (1) by x results in




Xy + Yu = U x. (2)

Since X cannot be measured directly, it must be estimated also. To do this,
note that since N and D are right coprime in M(R[z]), there exist A,

B1 € M (R[z]) (to be called auxilliary-controller) such that

A1N + BID =1 (3)
and, if (1) holds
XN + YD = U,(A\N + B D). (4)
Now, multiply (4) by x to get
Xy + Yu = Ul(Aly + Blu). (5
Finally, define € by
€ = Ul(Aly + Blu) - (Xy + Yu). (6)

But, this is not the end to completely defining €. This is because 1if we
apply a linear estimation algorithm to make e(k) converge to zero now, the
solution (Al’ Bl) can take a form not necessarily satisfying (3).
Fortunately, it can be shown [16] that by imposing degree constraints on X,
Y, 4;, By, Up» and restricting the constant term of B1 to be lower-
triangular with 1”°s in the diagonal, the (4;, B;) that solves (6) can be

forced to take values such that

e — e ——————— -~ _

D Y




|a N+ B,D| =1

when e (k) converges to zero. Therefore, although the to-be-identified
solution pair (Al’ B;) may still not satisfy (3), it will not change the final
feedback system poles from the desired values which are the zeros of Uj.

Note that if P were stable to begin with [12], D would be unimodular

in U(Z), and (1) can be equa;ed to D instead of U;, i.e.,

XN + YD = D. (7)
In this case, multiplying (7) by x yields

Xy + Yu = u,

Defining ¢ by

€ =u- (Xy + Yu) (8)

a much simpler error function for identifying a controller for the system is
obtained. The final poles of such a feedback system would be the same as the
poles of the plant.

If instead P were stably invertible with known right interactor
matrix J = z”GH, H a causal polynomial matrix [16], then JN ¢ U(Z) and
(1) can be equated to JN instead of Uy, i.e.,

XN + YD = JN = z OmN. (9)
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Multiplying (9) by zéx = zGD_lu yields

26 Xy + zGYu = Hy.

Defining € by

e = Hy - (x2%y + vz8u) (10)

again results in a linear function in terms of the unknowns (X, Y) which can
be identified by applying any linear estimation algorithm. If the identi-
fied X and Y actually satisfy (9) the feedback system will have all poles
at z = e, If the system is further implemented as shown in Figure 3 instead

of

v

r y-1 j&_u_' D1 N >y

Figure 3. Delayed-tracking system

as In Figure 2, the delayed-tracking scheme of [17] results.

For the rest of this paper, we will consider only the general case when
the plant is not necessarily stable or stably invertible and the error func-
tion is defined by (6).

To identify the unknowns A, Bi, X, and Y wusing (6), note that since
Uy is diagonal the unknowns can be identified row by row independently.

Hence as far as identification is concerned, the MIMO system being counsidered
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is no different from a SISO system. For integrity aund generality, however, we
shall keep the MIMO nature of the system. Let ay, bi’ Xis Yi»

i=1, eee, n denote the rows of Ay, By, X, Y respectively. Let

- - - -
a 0 by 0
az b2
A := * . ) B := ' . ]
0
I and .0 an
-ull1
u2[
U := . .
ul
o n —

Then (6) can be rewritten as

€ = [UlAl UlBl X Y] [y7 uw -y -u’]”

[AU BU X Y] [y? u -y -u’]” (11)
[A B X Y] [(Uy) (Wuw)”™ -y =-u’]-.

Let ei denote the ordered vector of parameters of [ai by x4 yi] to be

estimated. (Note that usually some of the parameters of [ai b; x4 yi]

are assumed known and need not be estimated.) Let ei(k) denote the k-th
estimate of ei and ¢i(k) denote the k-th ordered regressor vector
corresponding to 6i(k) and made up by the measurements of -[uiy' uju”

-y =~u”]”. Furthermore, let
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™ ~ - -
® 6, (k) bk 0
® 8 (k)
8 := s 8(k) := 2 , d(k) := .
) 1~ ° .
n 8 (k)
L J L. I - L ¢3(k)J
- 0 - )
l—‘l(k) )\l(k) 0
I'y (k) N (k)
(k) := . s A(k) := .
! '
n ku - ] .J

where Fi(k)’s are symmetric positive definite gain matrices and Ai(k)’s

are positive scalars. The equation error identification algorithm to be used

is assumed to be in the form

B(ktl) = (k) + T(K) 6(k) (A(K) + 8-(k) T(k) #(k)I} e(k),

(12)
e(k) = p(k) - ¢"(k) é(k).

Here y(k) denotes the vector of k-th values of signals generated by the

not-estimated parameters of [A B X Y] operating on their corresponding signals

according to (1l1). Identification algorithms having precisely this form

include at least the recursive least squares and the normalized gradient algo-

rithms {5]. Other algorithms having different forms may also be used.
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In case the plant were stably invertible and the simpler error function

(10) were used for identifying the controller, the identification algorithm
would be assumed to be in the 6-interlaced form

O(k+1Y = 9(k-6) + I'(k-6) ¢ (k-8)(A(k=6) + 87 (k=8) I(k=6)0(k~8); * € (k=5)

(13)
€(k=8) = Y(k=8) ~ ¢~ (k=6) 6 (k=3).

Note that this 1s different from the algorithm used in [5, Section 5.3.2] in
that e(k-8) 1is a function of ¢°(k-8) 6(k-§) instead of ¢"(k-8) 6(k).
This is important because the signal values in ¢ (k~5) are exactly what

( xk-ﬁ k—G )

the k-6th estimate y Y

of the controller operates on when it
is implemented as the controller for one period of time. This is also the key
factor in eliminating the slow—adaptation requirement in proving global

stability.

(13) is equivalent to
0(k+z) = 0(k) + I (k)b (k)(ACK) + ¢~ (k)T (K)o (k) Le (), (14)
e(k) = p(k) - ¢~ (K)8(k), £ > 1.

Since this is a more general form of identification algorithms than (12), we
shall assume that (14) will be used rather than (12) from now on.

The controller C will be assumed to be updated each time (X,Y) is esti-
mated and implemented as (Qk)‘-1 ik on line. Hence the implemented AC
system will have exactly the structure shown in Figure 2. We are now ready to

derive a complete error model for the class of AC systems under consideration.
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4, THE COMPLETE ERROR MODEL

Suppose P  has been undermodeled so that the pair (N,D) is only a
nominal (or tuned [4]) right coprime (in M(R[z])) factorization of P.
Correspondingly, (X,Y) and (A,B) are only left coprime (in M(R[z])) factori-
zations of the nominal controller and nominal auxiliary controller of P
respectively. Let (N, D) e M(R[z]) be a true r.c.f. (coprime 1in

1

M(R[z])) of P. That is, N*D*— =z P, Then the stable factor perturba-—

tions (N*’ D*))

o> D, =D - D,, (15)

are obviously due to the unmodeled dynamics in P. The purpose of this paper,
as mentioned in the introduction, is to prove that if the adaptive methodology
developed in the preceding section for the nominal plant ND-'1 is applied to
the true plant N*D;1 as shown in Figure 4, the resulting AC system will
stay globally BIBO stable if ﬂ[ﬁ;, 5;]’“3 is sufficiently small, r, d, n
are uniformly bounded, and the regressor matrix ¢ (k) is PE. This will be

done through error model analysis,

I.D.

Figure 4. True AC system

i
{
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To develop an error model for the complete undermodeled AC system, first

subtract 8 from (14) and let 6(k) :=0(k) -9 to yield

Flktr) = T (k) + M(k)pCk) (ACk) + ¢~ (RIT (K)o (k) Te(k),

(16)

e(k) = ¢9(k) - ¢7(k) 6(k).

Clearly, 8(k) must be the ordered vector of coefficients of
[aK-a B%-p x%-x v%-v] = (BF BF ¥* ¥4,

“k °k %k Tk .

corresponding to those of [A"B X Y] estimated. Here it 1is worth
. ~k ~k ~k ~k

pointing out that coefficients of [A"B X Y] corresponding to the not-
estimated parameters of [Ak Bk Xk Yk] are all zero due to the subtrac-

tion. Now note from (14) that
P - 67 (k) 8(kg) = (k) = 67 (kIO (K)
67 T () (A (K) + 67 (T (K)o (k) "Ly (k) = 67 (kDB (K))
= AGO(AGR) + 67 (T (kD4 (k) Tk = 67 (k)8 (KD) 5
therefore

F(ker) = 8(k) - TN (R (§7 (k)8 (k) = p(k)) (17)
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FeHt) = = ——— T (AL (k) (67 ()8 (ktr) = y(k)). (18)

1 - z;
Let (A,, B, Al*’ Bl*’ X,» Y.) € M(R[z]), A,, B, in exactly the same

block forms as A, B respectively, be a solution of

XN, + YD, = AUN, + BUD,

UA N, + UB LD, (19)

V, € U(2)

closest to (A, B, A;, By, X, Y) in the "'"a norm. Note that a solution
of (19) always exists because Ny, D, are right coprime in M(R[z]) (Fact

2.9). By Fact 2.4, this implies that (X,, Y,) and (Al*’ Bl*) are a true

controller and a true auxiliary controller of P respectively. Redefine x

by D;lu then (referring to Figure 4)
y = N*(x + n), u = D, x.
Multiplying (19) by x yields

Xe(y = Nyn) + You = A U(y - N,n) + B, Uu = V x. (20)

Let

5a
*
]
>
|
x_><
]
*

[}
]
|
]

then by the various definitions
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W) = $7(08 (erg) = AUy (i) + B 0uio) - ¥y - 0.
= &, + T woo + G+ T
- Gy + ¥ 500 - @, + T)u) (21)
- (X, - AUN,n(k).

Define V and Va by

V= XN, + YD, e M(Z), (22)

V, = AUN, + BUD, & M(Z). (23)

Remark 1: Note that if the plant is not undermodeled X, Y, A, and B

exist such that VvV = V, and the global stability issue can be much more

easily addressed. With undermodeling, V and V, can only be close to each
other (in terms of small 1w - Va"a) in general if the degree of under-
modeling is slight.

Multiplying (22) and (23) by x, one gets

Vx = X(y - N,n) + Yu, (24)

Vax = AU(y -~ N,n) + BUu. (25)
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Subtracting (20) from (24) and (25) /

>
*
”~~
<
2
*
=]
~
+
<
*

[+
il
”~N
<
1
<

*
[}
~
<
=4
*
=]
~
+
I~
*
c
=
]
~
<
1
<
*
~r
w
1
<
»

Substituting into (21)

Pk = 67 (k)8 etg) = K uy(k) + B¥*%uuk) + AUN (k) + ¥ x() \

Ky k) - T*ulk) - XN n(k) - Tx(k) (26)
= -7 (k)B(k+z) - (V - va)x(k) - (X - AU)N,n(k).
Now, from Figure 4 it is obvious that
“k 2k

x5 ¥5) (yn w1r = X1 1 a9y

Therefore,

Vx

[X Y][y” u']” - XN,n

—[%k ?k][y' u’]” + Xkr + d - XN,n.

Let  £(k) denote a matrix entirely similar to  ¢(k) except made up of
the measurements of r and d 1instead of those of y and u respec—

tively. Let also
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0 0
= 0 - 0
My := I ’ T, = 1 *
1 0
Then
-r —uiy
o= VRSB (o | - e )
d y
u
+ X(r - N*n) + d),
x(k) = V(€ ()T - ¢ (MF (k) + X(r(k) - Nya(k)) + d(k)) (27)

where T,M are diagonal matrices corresponding to T, My and mask out the
elements of 8 (k) corresponding to the parameters of XE Ek, ?k
appropriately. Thus, a complete error model is finally developed. It is

described by (18), (26), (27) and is shown in Figure 5.
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¢'(k)
8k +¢) == I'(k) ¢(k) AT (k) = )
Py h
1%
o $(m O
6(k) v,
p
= (kT '
(X ~ AU)N,
n N* >¢
x D*

Figure 5. Complete error model
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5. ROBUST GLOBAL STABILITY
The global stability proof of the error system in Figure 5 will be
analyzed by simply applying the well-known small gain theorem and assuming
persistently exciting ¢; that is, there exists «a, B, N, N> 1,
0 <a <B <= such that for all k> (N-1)z
N-1

BI > ] o¢(k-1g)¢"(k+iz) > a I. (28)
i=0

The error system will be considered as coansisting of three subsystems

SI: h |+ g(k-;),

Sy 8(k-t) |» (a,b),

S3: c |+ g.

We”ll begin with the well-posedness 1issue. Referring to Figure 5, S

relates h to ©8(k-z) as follows:

B lhg) = - — - P (K)o (AT (R)(h(k) + ¢~ (kDB (k+)),
1-2z
~ 1 -1 . -1 1 -1
a(k+g) = - (I + T(k)p (kA (k)" (k)) I(k)¢(k)A ~ (k)h(k)
l—zC l—zc
=-(1-2"1+ r(k)¢(k)A“(k)¢'(k))‘1r(k)¢(k)A'l(k)h(k).
B(k+r) = (1+1~<1<>¢,<1<>A"‘<k>¢'(k))‘1 (o(k) - P (k)6 (A ™ (k)h(k))
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= rl/?<k)(1 + 10y (k)A‘l(k)¢'(k)rl/%k))“lr’l/?(k)(m) - T (k)¢ (A GORM) .
SZ and S3 can be described by the relations
(b - a)(k) = (E7(K)T - ¢~ (KIM)z"B (k+z), (29)
gk) = B - V) vleqo.

Signals h and c¢ are related to d, f, and p (which are uniformly bounded

if r, n, and d are uniformly bounded) as follows:
c=d+ f + szsl(p + SBC)
- (1-5,58)"+f+S,5S p)
¢ 2°1°3 2°1P
-1
h=(p+ S3c) =p + S3(I - 823183) (d + £ + stlp).

Since A(k) > 0, I + Pyé(k)¢(k)A—1(k)¢'(k)fué(k) > I, therefore

(1 + 172 (k)¢(k)A_l(k)¢’(k)I‘1/2 (1))} is well-defined and S, 1is well-posed
as long as 3(0) is bounded. S, is well-posed as long as ¢(k) and

£(k) (hence r and d) are uniformly bounded. S3 is well-posed because

v, Va e M(Z) and the assumption that P 1is strictly causal (hence N, is
strictly causal) imply that the constant term of V = XN, + YDy 1is non-
singular and so V_1 e M(R(z)). Therefore the individual subsystems are
well-posed. For the entire system, since §, consists of at least one unit

of delay due to z 21, (I - SZSIS3)—1 is causal and well-defined.
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Therefore, if d, f, pe Zwe then k, c ¢ kwe and the small gain theorem

can be applied to the error system.

The homogeneous part of §; 1is made up by the relation
Fkr) = (I + T ()6 A (k)67 (k)) ™ (k). (31)

This relation has been shown to be exponentially stable for many linear esti-
mation algorithms [18,19] in which T(k) is updated in certain ways and the
elements of  A(k) are constant and initialized between (0,1] provided that
the PE condition (28) is satisfied. Assuming one of these algorithms is used
and again (28) holds, then the exponential stability of (31) implies that
S; 1s BIBO stable [20, Lem. 2.2] and Ym{Sl} =8 <=,

1
With S, being BIBO stable the following is true.

Lemma 2: Provided (28) holds and r, d are both uniformly bounded by

say, 83, S2 is BIBO stable.
Proof: (28) implies that
1o, < 82 (o VK
that is, ¢ (k)M is BIBO stable. Since E(k) is made up by the measure-

ments of the uniformly bounded r and d, E7(K)T is also BIBO stable.

Therefore, S, is BIBO stable.
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Hence, SZSI is BIBO stable with
Y -
Yo{5,8,} < (max{8'4 8,})8, =: 8,8, <.
By the small gain theorem [l1l, Theorem 3.2.1], the entire error system
will be BIBO stable if Yw{SB} can be made smaller than I/Yw{SZSl}'

This 1s always possible due to the following theorem.

Theorem 3: YN{S3} =1(V-V )V -1 1is smaller than l/ym{stl} if

n[ﬁ; 5;]’“3 is sufficiently small,
Proof: By definition,
V= XN, + YD, = XN + YD - (XN, + YD,) e M(2)
where XN + YD ¢ U(Z). Therefore,
XN, + YD, = XN + YD - V.

By Fact 2.8, if 1(X YI(N; B;1°0_ < 1/1(XN + D)1 then Ve U(2),

v'le M(z) and
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XN, + YD, - (AUN, + BUD,)

[X-AU Y-BU} [N} D}]-.
Applying (4) and noting that AU = UIAI’ BU = UlBl yields
V-V, = -[x-av Y-BU][¥] D;1°,
0V -V on, < 1i(x-aU Y-BUDN 0 (NG Bplcw .

Since X, A, U, Y, Be M(Z), #[X-AU Y—BU]IIa =: B, < », Therefore,

6
< B B NING DZI7W .
Hence if H[ﬁ; 5;]’na is smaller than
-1
min{1/(1(XN + YD) "¢ #[X YIN ), 1/(BsB Y, {5,5, D}

Mo ol
then 1 (V -V )V 1 < 1/v,(S,8)).

Thus the class of AC systems under consideration is proved to be robustly

globally stable against unmodeled dynamics and bounded n and d wusing the
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most conservative small gain theorem and assuming persistency of excitation of
the regressor vector. It is expected that the margin of such robustness will
be less-conservative in practice than that the proof of Theorem 3 has perhaps

impressed upon the reader.

Remark 4: Note that the key to the existence of a nonzero global
stability robustness margin is the finiteness of Yw(5281>' The PE condi-
tion only ensures this; it is not a necessary condition for global stability
robustness.

The comment preceding Theorem 3 implies that the smaller Yw{SZSl} is
the more robust the global stability of the AC systems under consideration
will be. In the next section, we offer a qualitative analysis of how the

degree of persistency of excitation, i.e., the values of a, 8 (28), and the

gains r(k), A(k) affect the smallness of ym{stl}.

6. ROBUSTNESS VS. DEGREE OF PE AND ADAPTATION GAINS
Due to the difficulties of analyzing the effects of time-varying matrix
gains on the robustness in general, we will consider ouly SISO AC systems and

assume r(k), Adk) to be equal to the scalar constants Y, A respec-

tively in this section.
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Recall from Section 5 that §; relates h to 8 (k-z) by (28) or
Bher) = (1 + 2 0007 ) HE0) - L 4cono)

= (14 L pp ()50 - (1 + L oe ) L 4 Gon)

(33)
m
= (1 (1 + L gCkm1g)p (k-12)) ) (komr)
1=0
T . Y -1y v
- _EO (ino (T + & ¢(k-ig)p” (k=12)) ") T 6 (k=32 )h(k-1t)
j= =

where m := fk/;]. Let t := [j/NJ, since (I + %—¢(k—ic)¢’(k—i;))-l <1I

Vk > ig

18 (k+g ) < N8 (k-mp) +

(34)
m t AN-1 _ 1
£ 3 (n o0 om (T + L eGein)e (k-it)) lnim) }3/2 Ink-iz) |,
j=0 &=1 1i=(2~1)N

where if t < 1 the term within the parenthesis is defined to be equal to

1. Now,

LN-1 -1 G-LN -1
T (T+LeGk-12)"(mie)) ™ = (1 (I + 1 ¢(k-12)6" (k-15)))
i=(4-1)N 1=¢N-1
(35)
LN-1 yoN Ul -1
= (T+5 T eGkeiz)eT(keig) +oeee + (DT T ¢(kmig)eT(k-ip)) .
i=(2-1)N

If v is small and approaches 0, then

AN-1 . N-1 .
T (T4 eG1e)" (ko)) » (T+F 7 o(kmig)e (k-ir))
i=(L-1)N i=(2-1)N
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Y L S
5_(1 + y I) T I,
16 (kg )1 < n0 (k-—mz )0+ ( ) (X—i—--—)t 13/2) max  |h(k-jg)|
0 - -] . Yo A .
j=0 j=0,m
~ u, =
< 1o (k-mz )+ (N -I- 6/2 ) (A—-%L—-—)j) max  |h(k-jg)|
— o Yo .
j=0 j=0,m
1.
~ 2
= W lemn, + BZOALYE) oy g
oo a
=0,m
1
5 Ng'2
= 18 (k-mg )I_ + — max |h(k-jg)]|.
o a
j=0,m
N81/2
This implies that Yw{Sl} = if Yy + 0. From Figure 5 it is obvious
that if Hr(k)“m 5_87 V k then

1
v I8,} = v [G0OT - 97 (0Om2®} < kB, + k872

where kl’ k2 denote the ranks of T, M respectively. This leads to

Nsl/z 1/, (36)
ym{szsl} <= (kpBy + k87%).
Y 5 vy .
Therefore, if Yw{s3} < a/(NB (k187 + kZB )) =2 p then the error system,

hence the AC system, will be globally BIBO stable for y » 0. In this sense
the value p may be termed the inherent (due to PE) robustness margin of
the AC system when y =+ 0.

The above result as well as the large number of AC system robustness
results obtained based on slow adaptation (or the averaging analysis) [5] does

not imply that slow adaptation necessarily increases or decreases the inherent
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robustness of an AC system. This can be enlightened by analyzing the robust-~
ness margin of a SISO system with only one parameter to be estimated.

Consider (35); if ¢ (k) is a scalar, then all terms under the

iaversion sign are nonnegative. Therefore, if (28) is satisfied,

2N-1 . o 2 .
1 (1 +¥:¢(k—i§)¢'(k—i;)) < (1 +1——+-Y—2—A(k))
i=(g-1)N A

2

where lE-A(k) denotes the nonnegative contribution by the terms in (35) of
A”2

orders 17 or higher. Assuming Ak) >n >0 for all but finite number

A

of k, then it is reasonable that a A(n) > 0 exists such that on the

average

gN-1 -1 —_— -1
T (1+LeGeide (mir)) ™ < (1 + F+ Lam) ™. @)
i=(2-1)N A

Substituting (37) into (34) and go through similar manipulations as for the

Yy + 0 case results in

18 (At N, < W8 (kmme MU, + == (Y + oy max |h(k-jz)|
J—O,m
and therefore
l/ 2 1
Ng 2 A h oY 1
v (s} =By v+ A= m2L sy — ). (38)
v T aem Ve Lam
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yw{sl} + » as y * o,

1
%2

But is not necessarily the smallest Ym{Sl}. This can be verified

by differentiating (38) with respect to Yy and equating to zero to yield
20 Lam) + O 4%m) + & - a)) = 0. (39)

This equation has only one valid solution at

Y _ o +/A(n) _.
N CY IR £

if A(n) Z_az. At this solution point
1/, - 2/B -a
ruls,} - w2 (A0 e

1/
2
which is smaller than E%—— except when A(n) = az. This implies that

provided A(n) > a2’ Yw{s1} reaches its lowest value (hence the AC system
is the most robust against unmodeled dynamics and disturbances) when the true

rate of adaptation %— is not the slowest possible.

7. CASE OF TIME-VARYING PLANT

Suppose the plant P had been not only undermodeled but also time-
varying. The development in Section 4 would go through entirely while the
results of Sections 5 and 6 would still hold true almost completely if one

simply adds a superscript k to the symbols



-31-

The results of Sections 5 and 6 will become completely true if one further

assumes that the now time-varying subsystem (Vk)_1

sufficiently slowly varying while satisfying (Vk)"1 e M(Z) ¥k and

“Nzﬂ s HDEH s nxkn s HAkﬂ all uniformly bounded over k.
a a a a

(see Figure 5) is

These are required so that (Vk)"1 is BIBO stable [28,29] with finite
Y@{(Vk)—l} and f, p, ¢ are uniformly bounded as assumed. Then
Yw{Vk - Vt} can be greater than zero and still satisfy the unity-loop-gain
condition of the small gain theorem. Thus the global BIBO stability of the AC
system with a time-varying plant is also proved to bé robust. Note that
although assuming the plant varies slowly would make the assumption that
(Vk)'1 is sufficiently slowly varying more easily satisfied, there is no

apparent need to do so, not even for the sake of achieving the desired per-

formance as indicated by our preliminary analysis (not included).

8. RESULTS AND DISCUSSION

It has been shown that, provided the regressor vector is persistently
exciting, the class of adaptive control systems with possibly time varying
plants developed in Section 3 is robustly globally BIBO stable against not
only unmodeled plant dynamics expressed in terms of stable factor perturba-
tions but also uniformly bounded arbitrary internal noises as well as external

disturbances. Although the margin of such robustness may seem pretty small
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from the proofs, its mere existence should be highly useful in terms of
enhancing user”s confidence on wusing adaptive methodologies for systems
control in practice where a plant is seldom as imprecisely known as has been
assumed in the proofs.

Although the analysis of robustness margin as related to the degree of
persistency of excitation and the adaptation gain in Section 6 is for the very
specialized case when the regressor vector is a scalar, the result casts a
doubt on the absolute benefit of slow adaptation. However, notice that our
analysis did not take into account of the possible effects of varying the
adaptation gain on the uniform upper bound éVé. True relationship between
slow adaptation and the inherent global stability robustness margin can only
be obtained when such effects are properly taken into account.

It is unfortunate that, as in [4,5], the PE condition assumed in this
paper presumes a uniform upper bound on the regressor signals before the proof
of system stability. A recent result proving stability robustness of an AC
methodology without a priori assuming bounded regressor is available in
[21]. However, a complex adaptation law needs to be implemented, and
stringent yet contradictory conditions on the adaptation gain need to be
verified in order for the results to be valid. These conditions also favored
slow adaptation which, as we pointed out, 1is not necessarily nonnegatively
related to the inherent global stability robustness. In spite of these
shortcomings, though, the solution methods used in [21] may still be highly

useful for eliminating the upper-boundedness assumption made via the PE

condition.
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